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Why does the Sun have a radius around 696000 km? We will see in this article that dimensional
arguments can be used to understand the size of the Sun and of a few other things along the way.
These arguments are not new and can be found scattered in textbooks. They are presented here
in a succinct way in order to better confront the kinematic and mechanical viewpoints on size. We
derive and compare a number of expressions for the size of the Sun and relate large and small scales.
We hope that such presentation will be useful to students, instructors and researchers alike.

In The Character of Physical Law Richard Feynman
stated that “every theoretical physicist who is any good
knows six or seven different theoretical representations
for exactly the same physics. He knows that they are all
equivalent, and that nobody is ever going to be able to
decide which one is right at that level, but he keeps them
in his head, hoping that they will give him different ideas
for guessing.” [1] Following Feynman’s advice, we provide
several different expressions for the radius of the Sun.
More generally, this will lead us to expressions for the
size of other stars and astronomical bodies like planets
and satellites, and eventually to a discussion of size in a
broader sense.

Many excellent textbooks review the multiple sciences
involved in the understanding of stars, their mechanics,
thermodynamics, acoustics, the intricacies of radiative
and convective processes, the interplay of atomic and nu-
clear physics, or the crossover between quantum and rel-
ativistic phenomena. To assist writing this article, we
principally used the book Stellar Structure and Evolu-
tion [2]. These many approaches cover widely varying
scales and viewpoints, and they can be followed quite
rigorously in many cases, yielding very good agreement
with observations. The present article proposes a walk
through some of the most thought-provoking formulas
offered by this field in order to show how the different
viewpoints are related, painting a kaleidoscopic answer
to the question: ‘what is the size of the Sun?’

Volumes have been written on the physics of stars be-
cause each argument that we will highlight can actually
be pushed to a high degree of precision through adequate
consideration of the geometric and dynamical subtleties
underlying them. To enable a wide-ranging exploration
in the short span of this article, we will have to neglect
these subtleties; we will rely mostly on dimensional argu-
ments. Formulas that will be presented have to be under-
stood as approximate, neglecting small numerical factors
of order 1. For instance, we will say that the volume
of a sphere of radius R is R3, omitting the factor 4π/3.
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Similarly, we will neglect careful integration of spatially
varying fields like pressure and density and only rely on
approximate bulk averages. At no point shall we venture
to state exact results, so we have used the sign ‘=’ to
stand for approximate equality, where others usually use
‘∝’ or ‘≃’. We have reserved these last two symbols to
respectively stand for scaling relations and approximate
numerical results. Thus, when we will say that A ∝ B,
we mean that A is proportional to B, and when we say
that A ≃ aua, we mean that the value of A in units ua

is approximately the number a.

Hydrostatic equilibrium

The most common way to approach the size of the
Sun and similar stars is to consider that it derives from
an equilibrium between two competing factors. The first
factor is gravity, which tends to compress the Sun. It can
be expressed as a force per unit volume Ψ (dimensions
ML−2T −2). The second factor is the pressure inside the
sun, resisting further compression. It can be expressed
as a force per unit area Σ (ML−1T −2). From these two
quantities, dimensions can combine to produce a length:

R =
Σ

Ψ
(1)

This length R is the radius of the Sun, understood as
a ratio of pressure and force density. This approach
is generally called that of ‘hydrostatic equilibrium’, be-
cause it basically has the same form as the relation be-
tween the pressure inside a fluid and its own weight [3].
This argument of hydrostatic equilibrium first emerged
in the late 19th century in studies by Lane, Kelvin and
Helmholtz [4, 5]. The equilibrium can also be written as
Ψ = Σ/R, which relates the force density to a pressure
gradient, or as ΨR = Σ, which relates the gravitational
inward pressure on the left to the outward pressure on
the right. The radius can also be seen as the result of the
balance of forces ΨR3 = ΣR2. Of course, neither pres-
sure nor force density are homogeneous inside the Sun,
so the quantities Ψ and Σ should be understood as giving
average orders of magnitude.
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To evaluate the relevance of Eq. 1, we can express the
force density as the product between the average density
of the Sun and the acceleration of gravity on its surface:
Ψ = ρg. Using the experimental values ρ ≃ 103 kg/m3

and g ≃ 3 102 m/s2, this gives Ψ ≃ 3 105 N/m3 [6]. Since
the observed radius of the Sun is R ≃ 7 108 m, for Eq. 1
to be valid would imply that the average pressure of the
Sun is Σ ≃ 2 1014 Pa. In practice, the pressure of the Sun
varies from about 10−2 Pa in its corona [7], to 3 1016 Pa
in the core, so Σ ≃ 2 1014 Pa must be understood as a
bulk average [6].

Sound speed and gravitational acceleration

The hydrostatic equilibrium as expressed in Eq. 1 is
the archetype of a mechanical expression for a length
scale. By this, we mean that the radius R, with dimen-
sion L, is expressed as a ratio between two ‘mass-carrying
quantities’, i.e. quantities with mass in their units. In
the case where the force density can be expressed as a
weight density Ψ = ρg, the hydrostatic equilibrium can
also be turned into a purely kinematic expression:

R =
v2s
g

(2)

where vs = (Σ/ρ)
1
2 is the ‘speed of sound’ inside the Sun,

i.e. the speed of mechanical waves [3]. In this expression
of the radius, the terms of the ratio on the right-hand
side do not have any mass in their units. The dimensions
of the speed vs are LT −1, and the dimensions of the
acceleration g are LT −2. Overall, the ratio v2s/g has
the dimensions of a distance. Here again, the terms of
the equation can be moved around so as to gain new
insight. For instance, one can notice that R/vs is the
time required for sound waves to travel across the Sun.
According to Eq. 2, this time scale should be equal to
vs/g. We will shortly see how to interpret this time scale.
If the radius and accelerations are known, Eq. 2 can

be used to estimate the average sound speed inside the
Sun, as vs = (Rg)

1
2 ≃ 4 105 m/s. This value is indeed

the right order of magnitude of the bulk average [6, 8].

The gravitational constants

We mentioned that at the surface of the Sun the grav-
itational acceleration is g ≃ 275 m/s2, yet on Earth it is
g ≃ 9.8 m/s2. This difference is due to the fact that be-
hind the acceleration g hides the mass and the radius R
itself. Indeed, the weight Fi = mig of an object of mass
mi at the surface of the Sun can be expressed more gen-
erally from Newton’s formula as Fi = GMmi/R

2, where
G ≃ 6 10−11 kg−1 m3 s−2 is the universal gravitational
constant, and where M ≃ 2 1030 kg is the mass of the
Sun. Then, we can replace g by GM/R2 and express
the density of the Sun as ρ = M/R3. By inserting these

expressions for g and ρ into Eq. 2 and solving for R we
get:

R =
(GM2

Σ

) 1
4

(3)

If instead we express the mass in terms of the density, we
get:

R =
( Σ

Gρ2

) 1
2

(4)

These two equations are mechanical in the sense defined
above: they involve quantities with mass in their dimen-
sions. However, in contrast to Eq. 1 these equations in-
volve three rather than two quantities.

Sound/escape speed and free-fall time

To a gravitational field with acceleration g = GM/R2

one can also associate an ‘escape speed’ ve = (GM/R)
1
2 ,

which gives the typical speed necessary to escape the at-
traction of a body of mass M and radius R. Coinciden-
tally, this speed is also the orbital speed at a distance
R. Either way, ve is the scale of speed set by gravity.
One can see that the escape speed can be expressed as
ve = (gR)

1
2 , which is also the expression of the sound

speed deduced from Eq. 2. Hence, the radius of the sun
can be understood as corresponding to the identity be-
tween the sound speed and the escape speed, ve = vs:(GM

R

) 1
2

=
(Σ
ρ

) 1
2

(5)

This approach is usually associated with Jeans, who de-
rived the condition for a gas cloud to collapse into a star
to be ve ≳ vs [9].
Now that we know that for a gravity-bound body at

hydrostatic equilibrium the sound speed is equal to the
escape speed, we can give an interpretation to the time
scale vs/g. Indeed, since vs = ve = (gR)

1
2 , then we can

define a time scale τ = vs/g = (R/g)
1
2 = (Gρ)−

1
2 . This

time scale is often called the ‘free-fall time’ and corre-
sponds to the time that a body would take to collapse
under its own gravitational attraction [2]. For the Sun,
τ ≃ 1 h. This time scale does not depend on the absolute
size of the object but on its density. Since the Sun and a
human being have similar densities, they would collapse
after a similar time of one hour.
The radius R can be understood as the distance trav-

eled by sound over a time equal to τ . Generally, we have

R = vsτ = veτ (6)

Schwarzschild radius

Gravitation associates a special radius to any object
with a given mass. This is the Schwarzschild radius [10],
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which corresponds to the size of a black hole with that
mass. For the Sun, this radius is Rs = GM/c2 ≃ 1 km,
where c ≃ 3 108 m/s is the speed of light. We can
use Eq. 3 to express the size of the Sun in terms of its
Schwarzschild radius as:

R = Rs
c2

(v3evs)
1
2

= Rs

( c

ve

)2

= Rs

( c

vs

)2

(7)

In this identity, the dimension of length is provided by
Rs, and the rest of the equation is a dimensionless ratio
built out of the speeds vs, ve and c. In the limit where
ve = vs = c, we have R = Rs, i.e. if the escape/sound
speed is equal to the speed of light, then the object is a
black hole.

Solar internal energy

So far, we expanded on Eq. 1 by specifying the con-
tent of the force density Ψ = ρg = ρ2GR = GM2/R5

when the inward force comes from gravity. In contrast,
we barely investigated the pressure Σ; we just related it
to the sound speed. Density is quite naturally connected
to a ratio between mass and volume, as in ρ = M/R3.
In a similar way, the dimensions of pressure suggest
that it can be expressed as a density of energy since
ML−1T −2=ML2T −2/L3. Thus, one can define a so-
lar energy as E = ΣR3 and express the radius of the Sun
as:

R =
E

F
=

GM2

E
(8)

where F = ΨR3 = GM2/R2 is the scale of the self gravi-
tational force. The second expression will later be useful.
The first equation can also be rearranged to express the
solar energy as E = Mv2e = MgR ≃ 1042 J. As a compar-
ison, Type Ia supernovae release an energy on the order
of 1044 J [11].
If one uses the density ρ = M/R3, the energy E, and

the free-fall time τ = (Gρ)−
1
2 , then the radius of the Sun

can be written as

R =
(E
ρ

) 1
5

τ
2
5 (9)

This expression is reminiscent of the formula for the
spreading of an explosion blast in the Taylor-Sedov
regime [12, 13], which includes supernovae. Here, the
free-fall time τ replaces the time since the beginning of
the explosion. The size of the Sun is similar to that of
an explosion frozen at a time τ after ignition.

Equation of state and polytrope

Note that Eq. 3 should not be used to infer that
R ∝ Σ− 1

4 , nor should Eq. 4 be used to infer that R ∝ Σ
1
2 .

Indeed, both mass and density can depend on pressure.
The actual scaling between size and pressure will depend
on the ‘equation of state’ of the body; i.e. on the spec-
ification of an additional relation between Σ and ρ [3].
We will see later that in some contexts this relation can
be specified from microscopic considerations, but it can
also be set phenomenologically by prescribing that the
equation of state be that of a ‘polytrope’ [14]:

Σ = Kργ = Σr

( ρ

ρr

)γ

(10)

where in the first equation the dimensions of the propor-
tionality factor K are M1−γL3γ−1T −2. The dimension-
less exponent is usually written as γ = (n+1)/n, where n
is called the ‘polytrope index’. In the rightmost equation
we define the proportionality factor in terms of a refer-
ence density and pressure as K = Σr/ρ

γ
r . The polytrope

is expected to be valid in the vicinity of the reference
values.
Using Eq. 4 in conjunction with the polytrope equa-

tion, we can express the radius R as:

R =
(K
G

) 1
2

ρ
γ−2
2 =

Σ
1
2
r

ρG
1
2

( ρ

ρr

) γ
2

(11)

This approach is usually associated with Lane and Em-
den [15, 16]. We will now see that values of K and γ can
sometimes be computed from microscopic models.

Microscopic density and pressure

Whereas mass and energy are typically understood as
‘extensive’ properties and depend on the size of the sys-
tem, density and pressure are ‘intensive’ and are expected
to be independent of the size of the test volume. In fact,
this independence of size only holds down to microscopic
scales. Let us call r, m and ε the size, mass and energy of
the smallest scale where m/r3 = ρ and where ε/r3 = Σ.
We call this scale the microscopic scale. For sizes smaller
than r, density and/or pressure significantly vary from
the macroscopic values. Using Eq. 4 we can write:

R2 =
ε

Gm2
r3 =

r3

d
(12)

We know from Eq. 8 that d = Gm2/ε is the size of a
body of mass m at hydrostatic equilibrium under its own
gravity and pressure ε/r3. However, this size d must
be different from r. Indeed, by construction we have
r < R and d < R, and Eq. 12 states that R2d = r3, thus
d < r < R.
The identity between the microscopic and macroscopic

pressures, ε/r3 = E/R3 is sometimes formulated as the
‘Virial theorem’ [17]:

ε = GmρR2 = Gm
M

R
(13)
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This equation relates the potential energy between the
macroscopic mass M and the microscopic mass m to the
microscopic energy ε. The energy ε is usually understood
as a kinetic energy involving the sound speed (ε/m)

1
2 =

(Σ/ρ)
1
2 .

Microscopic equilibrium

In Eq. 12 both lengths d and r are associated with the
same energy ε and mass m, but not in the same way.
How can one express the size r? Can this be done in
analogy with what we derived for the size of the Sun?
Expressions such as R = Σ/Ψ or R = E/F are too vague
to ever be false. They owe their generality to their vague-
ness. If one specifies the mass M , or the force F , or the
energy E–or their densities (ρ, Ψ, Σ), then one can ex-
press more detailed results. This is what we did for the
Sun, where the force comes from gravity. For the size r
we can similarly state without too much risk that:

r =
ε

f
(14)

where f is a yet unspecified force. The only thing we
know is that f ̸= Gm2/r2; i.e. the dominant force at the
microscopic scale is not self-gravity. Indeed, otherwise
we would have r = εr2/Gm2 = d = R according to
Eq. 12. Density and pressure would be far from intensive.
If density and pressure are constant down to a scale of
size r < R, then this scale must be governed by forces
beyond gravity.

Electromagnetic equilibrium

The dominant force f at scale r can take many forms
depending on contexts, but one example has proven to
be very fruitful. This is the case where Newton’s law of
gravitation (15) is replaced by Coulomb’s law of electro-
statics (16):

F =
GM2

R2
(15)

f =
k(ne)2

r2
(16)

For the gravitational force we assumed self-gravitation of
a mass M and size R, as in the case of the Sun. For the
electrostatic force we assumed two opposite charges ne,
where e ≃ 1.6 10−19 C is the elementary charge and n is
an integer. The two charges are separated by a distance
r. The Coulomb constant k ≃ 9 109 kg m3 s−2 C−2

and the elementary charge can be combined into a single
quantity S0 = ke2 ≃ 2 10−28 kg m3 s−2 (no more units
of charge). We then define S = n2S0. The number n
is usually small due to screening between positive and
negative charges.

Using f = S/r2 and r = ε/f we can obtain the elec-
tromagnetic equivalent of the hydrostatic equilibrium:

r =
S

ε
(17)

In the same way that the energy E and pressure Σ were
left unspecified in the gravitational case, here the nature
of the energy ε is unknown. For the gravitational case,
we used the values of M and R to deduce the values of E
or Σ. Here, values of r and S would be enough to deduce
a value of the energy ε or pressure ε/r3.

Electromagnetic kinematics

The substitution of the electromagnetic force in place
of the gravitational force changes the definition of the
kinematic quantities described so far. The formulas de-
rived for the hydrostatic equilibrium of a body under its
own gravity can be extended to the electromagnetic case
by using the following substitutions:

g =
GM

R2
→ S

mr2
(18)

v2s =
Σ

ρ
→ ε

m
(19)

v2e =
GM

R
→ S

mr
(20)

τ2 =
1

Gρ
→ mr3

S
(21)

Rs =
GM

c2
→ S

mc2
(22)

For instance, in analogy with Eq. 2 one can say that r =
v2s/g, only if the sound speed is redefined as vs ≡ (ε/m)

1
2 ,

and if the ‘electromagnetic acceleration’ is redefined as
g ≡ S/(mr2).

Stoney mass and Planck mass

In the electromagnetic expressions, we have used the
radius r, mass m and energy ε, the same symbols we
used in Eq. 12 to describe the smallest scale at which
density and pressure are equal to their macroscopic val-
ues. How can one be sure that electromagnetic forces
dominate over gravity at the scale r? Using Eq. 12 and
Eq. 17 we can write the size of the Sun in terms of the
size obtained from electromagnetic equilibrium as:

R =
(SG−1)

1
2

m
r (23)

This expression is legitimate if electromagnetism is the
relevant force at the scale r. The strengths of the
gravitational and electromagnetic forces can be ex-
pressed respectively asGm2 and S (both with dimensions
ML3T −2). When m = M , the electromagnetic force is
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completely negligible since GM2 ≫ S (1050 ≫ 10−28 kg
m3 s−2, assuming S = S0). One can then derive the mass
mS that would correspond to the case where the electro-
magnetic and gravitational forces have similar strengths,
i.e. when R = r:

mS =
(S

G

) 1
2

(24)

In cases where the strength of the electromagnetic forces
is well characterized by the value S0 obtained for a pair
of elementary charges, then mS ≃ 10−9 kg. This mass is
called the Stoney mass [18]. Thus, Eq. 23 can be rewrit-
ten as:

R =
mS

m
r (25)

Similarly, we can write d = (m/mS)
2r. Note that if a

material can locally deviate substantially from neutrality
then the value of S and mS must be increased accord-
ingly.

One can also define the fine structure constant as α =
S0/ℏc ≃ 1/137, with Planck’s constant ℏ ≃ 10−34kg m2

s−1 and reach:

R = α
1
2
mP

m
r (26)

where the Planck mass is mP = mS/α
1
2 = (ℏc/G)

1
2 [18].

So far, we have used electromagnetism to derive a re-
lation between the macroscopic R and the microscopic r,
but we have not specified any value for r and m. From
Eq. 17 we know that specifying ε will lead to r, but m
seems relatively free, as long as m ≪ mS . We know
from Eq. 25 that if the mass m associated with the size r
is much smaller than mS then electromagnetism will be
dominant over gravity. However other forces may domi-
nate over electromagnetism, in which case Eq. 25 or 26
loose their validity.

Atomic units

A particularly interesting choice of microscopic size
and mass considers the standard atomic units based
on the hydrogen model with one nucleon (proton) of
mass m0 and one electron of mass me. This model is
particularly useful for stars since they are mostly com-
posed of hydrogen. In this context, we have S = S0,
m = m0 ≃ 1.7 10−27 kg, and the Hartree energy and
Bohr radius [18]:

ε0 = me

(S0

ℏ

)2

=
ℏ2

mer20
≃ 4 10−18 J (27)

r0 =
S0

ε0
=

ℏ
meαc

≃ 5 10−11 m (28)

where we used the electron mass me ≃ 9 10−31 kg. Note
that the ratio S0/ℏ has the dimensions of a speed, and

is often expressed as αc. With these units, pressure and
density have values comparable to Σ and ρ:

Σ0 =
ε0
r30

≃ 3 1013 Pa ≈ Σ (29)

ρ0 =
m0

r30
≃ 104 kg/m

3 ≈ ρ (30)

With these atomic units we can obtain the following
radius:

R0 =
ℏ2

(GS0)
1
2

1

m0me
=

m2
P

α
1
2m0me

ℓP ≃ 5 107 m (31)

In the last equation we express the reference size in terms
of the Planck length ℓP = (ℏG/c3)

1
2 ≃ 6 10−34 m, which

is expected to be the smallest possible size. The radius
is associated with the following mass:

M0 =
m3

S

m2
0

= α
3
2
m3

P

m2
0

≃ 2 1027 kg (32)

These expressions only involve fundamental constants.
We will say that R0 and M0 are the reference size and
mass. These types of expressions for the size and mass of
stars are usually associated with the astrophysicist Chan-
drasekhar [19], who used these reference values in the
derivation of the maximum mass of stable white dwarfs
(now called the Chandrasekhar limit). The depth of
these formulas has been noticed on several occasions [20–
23]. Note that Eq. 32 can also be expressed, referring to
Eq. 24, as an equation expressing the relative strengths
of the electromagnetic and gravitational interactions:

(GM2
0 )(Gm2

0)
2 = S3

0 (33)

From the reference size and mass, one can also derive
reference values for speed (sound/escape), acceleration
and time (free-fall):

v0 =
(GM0

R0

) 1
2

=
α

β
1
2

c ≃ 5 104 m/s (34)

g0 =
v20
R0

=
α4

β2

FP

M0
=

α
5
2

β2

FP

mP

(m0

mP

)2

≃ 50 m/s
2

(35)

τ0 =
R0

v0
=

(β
α

) 3
2
(mP

m0

)2

τP ≃ 103 s (36)

where β = m0/me ≃ 1836 is the dimensionless ratio
between the mass of a nucleon (proton or neutron) and

the mass of an electron. The constant τP = (Gℏ/c5) 1
2 is

the Planck time, and Fp = c4/G is the Planck force [18].

From natural satellites to stars

Given how we crudely neglected numerical factors, R0

is not such a bad approximation for the radius of the Sun.
However, there are stars with sizes smaller or larger than
the Sun, for which the mass m and energy ε must differ
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from the atomic units. There can be atoms larger than
Hydrogen, with m > m0, and there could be atomic en-
ergies different from Hartree’s formula. Deviations from
the reference value computed in terms of atomic units
can be revealed quite strikingly by plotting the density
M/R3 versus the radius R for an array of astronomical
bodies from natural satellites to stars [24], as shown in
Fig. 1. As can be seen the atomic units provide the size of
the crossover between stars and planets, but stars, plan-
ets and smaller bodies can significantly deviate from the
reference point. Moreover, stars display a different trend
than smaller bodies.

For stars, the density usually decreases as the radius
increases. Whereas a star like the Sun has a density
close to that of water, stars a hundred times larger can
have a density smaller than that of air. This trend can
be understood roughly by invoking the Virial theorem
in Eq. 13, which states that ρ = ε/GmR2. Thus, if the
microscopic energy per unit mass ε/m is constant then
ρ ∝ R−2. In Fig. 1, the dotted line provides this scaling in
the case where ε = ε0, assuming m = m0. As is obvious,
this choice of atomic energy strongly underestimate the
density. The dotted dashed line gives a better fit for
an energy ε = 100ε0. We shall explain such difference
shortly.

For planets and smaller bodies, the density is roughly
constant, close to the reference atomic value ρ0. For the
density to remain constant for bodies of different sizes,
the Virial theorem imposes that the kinetic energy per
unit mass should follow ε/m ∝ R2. This can also be
stated as ε/r3 ∝ R2, or as Σ ∝ R2. The smaller the size
the smaller the internal pressure Σ.

The mass m, energy ε, and size r of the microscopic
scale can be fairly independent from one another. The
microscopic parameters can produce different types of
pressure ε/r3 and density m/r3, beyond the values ob-
tained in terms of atomic units. In the microscopic realm,
the relationship between ε, m and r is the equivalent of
the macroscopic equation of state. In general, we can
express the size R in Eq. 13 from the reference values as:

R =
( ε

ε0

) 1
2
( m

m0

)−1( r

r0

) 3
2

R0 =
( Σ

Σ0

) 1
2 ρ0
ρ
R0 (37)

For stars or for planets, the particular relationships be-
tween the microscopic parameters can then be used to
constrain this equation further.

The Eddington model

To give but one example of the ways in which the size of
astronomical bodies can deviate from the reference value,
let us consider the Eddington stellar model [25]. This
model is sometimes called ‘the standard stellar model’,
and it is usually described in textbooks concerned with
stars [2]. Discussing this model also gives us the oppor-
tunity to underline the fact that our approach so far has
been a bit stereotypical of an astrophysical viewpoint,

FIG. 1: The density as a function of radius for a few astro-
nomical objects, from moons and planets to stars [24]. The
vertical dashed line is R0 defined in Eq. 31. The horizontal
dashed line is the density ρ0 obtained from Eq. 30. The dot-
ted and dotted-dashed lines represent the predictions of the
Virial theorem (Eq. 13), respectively with ε = ε0 (Hartree
energy), ε = kBT (thermal energy), with a constant tem-
perature T = 107 K. Note that the density is here defined
as M/R3 instead of M/(4π/3)R3, which gives values slightly
larger than standard results.

in contrast to the astronomical perspective. Typical as-
tronomical observations of stars rarely yield their size or
mass, the most common observables being rather their lu-
minosity and spectral characteristics. These observables
are then transformed to mechanical quantities like mass,
pressure, density, etc. The link for such a transformation
is temperature.

In the Eddington model and others of its kind, the
equation of state relating pressure and density uses the
star temperature T . In practice, temperature varies in-
side stars from the core to the envelope, and T must
be understood as a bulk average. Using Boltzmann’s
constant kB ≃ 1.38 10−23 m2 kg s−2 K−1, an energy
can be translated into a temperature using εT = kBT .
In this framework Hartree’s atomic energy would corre-
spond to a temperature T0 ≃ 3 105 K. Thus, for the stars
in Fig. 1, the energy ε = 100ε0 corresponds to a temper-
ature T ≃ 3 107 K, which is the right order of magnitude
for the temperature in stars like the Sun [6].

Eddington’s model proposes that the pressure inside
a star be given as a fixed combination of a gas pressure
and a radiation pressure, where the gas pressure follows
the ideal gas law Σ1 = (ρ/m)εT , and where the radiation
pressure follows Stefan-Boltzmann law Σ2 = ε4T /(cℏ)3.
If θ ∈ [0, 1] is the proportion of thermodynamic pressure
then 1 − θ is the proportion of radiation pressure, such
that θΣ = Σ1 and (1 − θ)Σ = Σ2, where Σ is the total
pressure. One can then replace the thermal energy ε by
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mθΣ/ρ to express the radiation pressure as:

(1− θ)Σ =
Σ4

(cℏ)3
(mθ

ρ

)4

(38)

This equation can be solved for the total pressure Σ. By
noticing that cℏ = S0/α the total pressure can then be
expressed as:

Σ =
1

α

(1− θ

θ4

) 1
3
(m0

m

) 4
3
( ρ

ρ0

) 4
3

Σ0 (39)

If one assumes that m = m0 and that θ is constant, then
this equation provides a fully specified polytrope with
γ = 4

3 (and references ρr = ρ0 and Σr = ((1−θ)/θ4)
1
3Σ0).

With this equation of state, the radius and mass of the
star become:

R =
1

α
1
2

(1− θ

θ4

) 1
6
( ρ

ρ0

)− 1
3

R0 (40)

M =
1

α
3
2

(1− θ

θ4

) 1
2

M0 (41)

Stars following this equation of state can have different
radii but they all share the same mass. If one assumes
that the Sun follows such equation of state, it would
imply that radiation only account for 20% of the pres-
sure. Note that this equation of state implies ρ ∝ R−3.
The data in Fig. 1 are closer to ρ ∝ R−2, which can
be interpreted by changing the proportion of radiation
and thermodynamic pressures as the size increases. Ar-
guments aimed at deciphering the value of θ for differ-
ent populations of stars usually rely on a decomposi-
tion of the size of a star into layers (core, envelopes,
etc.) with different amounts of radiation and convec-
tion. Schematically, greater accuracy on the size of stars
requires their radius to be decomposed additively, for in-
stance as R = Rcore + Renv, where the sizes of the core
and envelop are then decomposed multiplicatively as in
the many ways we followed in this article [2]. This degree
of precision goes beyond our scope but is inescapable if
one wishes to recover the properties of the wide variety
of stars in the cosmos.

White dwarfs, neutron stars and black holes

All expressions of R from Eq. 3 to Eq. 9 are essentially
equivalent, they just present the same relations under
different disguises. All these formulas correspond to an
object bound by its own gravity, which is resisted by an
unspecified internal pressure Σ, which can be expressed
as an energy E if need be. These expressions are expected
to be valid for all objects in Fig. 1. Actually, these equa-
tions are expected to be valid for some objects beyond
the range of the figure, in particular for stars outside the
‘main sequence’.

The stars represented in Fig. 1 all lie on the ‘main
sequence’, where the internal pressure is some mixture of

Object Pressure Radius

White dwarf
(classical)

ℏ2/mer
5

Σ0(r0/r)
5

Σ0(ρ/ρ0)
5
3

R0(ρ0/ρ)
1
6

White dwarf
(relativistic)

ℏc/r4
Σ0α

−1(r0/r)
4

Σ0α
−1(ρ/ρ0)

4
3

R0α
− 1

2 (ρ0/ρ)
1
3

Neutron star
(ideal)

Σ0α
3(εn/ε0)

4

Σ0α
−1(ρn/ρ0)

4
3 R0α

1
2 β−1 ≃ 2km

Black hole
(of mass M0)

c8/G3M2
0

Σ0α
−4(ρn/ρ0)

4
3

Σ0(ρb/ρ0)
4
3

R0α
2β−1 ≃ 1m

TABLE I: Pressure and associated radius for different types
of astronomical objects beyond the main sequence of stars.
For a given object, the various expressions for the pressure
are equivalent, assuming that the mass of the microscopic
scale is m = m0. The ideal neutron star considers a star
with a nuclear density ρn = m0/r

3
n ≃ 1018 kg/m3, where

rn = ℏ/m0c is the Compton wavelength of the nucleon, and a
nuclear energy εn = m0c

2. For the black hole of mass M0, the
density is ρb = c6/G3M2

0 . We recall that β = m0/me ≃ 1836
and α = S0/ℏc ≃ 1/137.

thermodynamic or radiation pressures, well described by
the Eddington model. However, some stars are governed
by different types of internal pressure, which can lead
to masses and radii lying outside the range of Fig. 1.
Table I gives a few classical examples, left for the reader
to ponder.

Conclusion

A diversity of ‘ideas for guessing’ led us to more than
a dozen formulas providing equivalent approximations of
the size of the Sun. The size of the Sun can be seen as the
result of a balance of forces or pressures, or as the conse-
quence of an equation relating sound and escape speed,
or as a frozen explosion. The size of the Sun can be ex-
pressed in terms of the size of its equivalent black hole,
or in terms of the size of its microscopic constituents. We
saw that some of these formulas also apply to other ob-
jects bound by gravity including different types of stars,
as well as planets, and to some extent to microscopic
objects bound by forces beyond gravity.
The gigantic gap between the microscopic realm of

atoms and the astronomical realm of planets and stars is
quite daunting. In this paper, we provided a few simple
arguments that can help bridge this divide, demonstrat-
ing the strong links between the quantum microcosm and
the much larger scales dominated by gravity.
The path we took to connect all these different formu-

las is one out of many. Any written story has a beginning
and an end, so we had to start somewhere, with the hy-
drostatic equilibrium, and finish somewhere else, with the
Eddington model and a table of additional cases based on
different kinds of pressure. The beginning was in no way
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a means to an end, nor the end our goal. We invite the
reader to explore their own path across the fascinating
landscape of stellar physics, which provides an exciting
laboratory for thought experiments about what we col-
lectively mean by the ‘size’ of something.
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